Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 469: 133778, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38460255

RESUMO

Information on the indoor environment as a source of exposure with potential adverse health effects is mostly limited to a few pollutant groups and indoor types. This study provides a comprehensive toxicological profile of chemical mixtures associated with dust from various types of indoor environments, namely cars, houses, prefabricated apartments, kindergartens, offices, public spaces, and schools. Organic extracts of two different polarities and bioaccessible extracts mimicking the gastrointestinal conditions were prepared from two different particle size fractions of dust. These extracts were tested on a battery of human cell-based bioassays to assess endocrine disrupting potentials. Furthermore, 155 chemicals from different pollutant groups were measured and their relevance for the bioactivity was determined using concentration addition modelling. The exhaustive and bioaccessible extracts of dust from the different microenvironments interfered with aryl hydrocarbon receptor, estrogen, androgen, glucocorticoid, and thyroid hormone (TH) receptor signalling, and with TH transport. Noteably, bioaccessible extracts from offices and public spaces showed higher estrogenic effects than the organic solvent extracts. 114 of the 155 targeted chemicals were detectable, but the observed bioactivity could be only marginally explained by the detected chemicals. Diverse toxicity patterns across different microenvironments that people inhabit throughout their lifetime indicate potential health and developmental risks, especially for children. Limited data on the endocrine disrupting potency of relevant chemical classes, especially those deployed as replacements for legacy contaminants, requires further study.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluentes Ambientais , Criança , Humanos , Poeira/análise , Sistema Endócrino , Estrogênios , Androgênios , Poluição do Ar em Ambientes Fechados/análise
2.
Environ Res ; 219: 115105, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36549487

RESUMO

Many semi-volatile organic compounds (SVOCs) accumulate in indoor dust, which serves as a repository for those compounds. The presence of SVOCs in indoor environments is of concern because many of them are suspected to have toxic effects. Total SVOC concentrations in the dust are generally used for exposure assessment to indoor contaminants, assuming that 100% of the SVOCs is accessible for human uptake. However, such an assumption may potentially lead to an overestimated risk related to dust exposure. We applied a multi-ratio equilibrium passive sampling (MR-EPS) for estimation of SVOC accessibility in indoor settled dust using silicone passive samplers and three particle size dust fractions, <0.25 mm, 0.25-0.5 mm, and 1-2 mm in dry and wet conditions. Equilibrations were performed at various sampler-dust mass ratios to achieve different degrees of SVOC depletion, allowing the construction of a desorption isotherm. The desorption isotherms provided accessible fractions (FAS), equivalent air concentrations (CAIR), dust-air partition coefficients (KDUST-AIR) and organic carbon-air partition coefficients (KOC-AIR). The highest FAS were observed in the <0.25 mm dust fraction in wet conditions which is relevant for exposure assessment via oral ingestion. The highest CAIR were estimated for several organophosphorus flame retardants (OPFRs), polycyclic aromatic hydrocarbons (PAHs) and synthetic musks. The logKOC-AIR did not differ between dust particle sizes in dry and wet conditions but within compound groups, different relationships with hydrophobicity were observed. Equivalent lipid-based concentrations (CL⇌DUST) calculated using available lipid-silicone partition coefficients (KLIP-SIL) were compared with lipid-based concentrations (CL) measured in human-related samples collected from Europeans. For hexachlorobenzene (HCB), CL⇌DUST, and CL were similar, indicating equilibrium attainment between environment and human samples. Lipid-based concentrations for persistent legacy contaminants were also similar but lower for PBDEs in human samples. Overall, accessibility estimation using MR-EPS in dust further contributes to human risk assessment.


Assuntos
Poluição do Ar em Ambientes Fechados , Retardadores de Chama , Compostos Orgânicos Voláteis , Humanos , Poeira/análise , Compostos Orgânicos Voláteis/análise , Poluição do Ar em Ambientes Fechados/análise , Medição de Risco , Retardadores de Chama/análise , Lipídeos , Monitoramento Ambiental
3.
Toxics ; 10(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36287909

RESUMO

Over the last decades, concern has arisen worldwide about the negative impacts of pesticides on the environment and human health. Exposure via dust ingestion is important for many chemicals but poorly characterized for pesticides, particularly in Africa. We investigated the spatial and temporal variations of 30 pesticides in dust and estimated the human exposure via dust ingestion, which was compared to inhalation and soil ingestion. Indoor dust samples were collected from thirty-eight households and two schools located in two agricultural regions in South Africa and were analyzed using high-performance liquid chromatography coupled to tandem mass spectrometry. We found 10 pesticides in dust, with chlorpyrifos, terbuthylazine, carbaryl, diazinon, carbendazim, and tebuconazole quantified in >50% of the samples. Over seven days, no significant temporal variations in the dust levels of individual pesticides were found. Significant spatial variations were observed for some pesticides, highlighting the importance of proximity to agricultural fields or of indoor pesticide use. For five out of the nineteen pesticides quantified in dust, air, or soil (i.e., carbendazim, chlorpyrifos, diazinon, diuron and propiconazole), human intake via dust ingestion was important (>10%) compared to inhalation or soil ingestion. Dust ingestion should therefore be considered in future human exposure assessment to pesticides.

4.
Environ Sci Process Impacts ; 22(12): 2322-2331, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33130833

RESUMO

Organic compounds like flame retardants (FRs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) are consistently found in both indoor and outdoor environments. There are many possible matrices for measurement of these compounds (e.g. indoor dust, air - passive and active air samples), but all methods have limitations, like the heterogeneous distribution of indoor dust, or noisy active air samplers. We used filters from building-wide heating, ventilation and air conditioning (HVAC) units to evaluate levels of PAHs, PCBs, OCPs and NFRs in indoor and outdoor environments, and to evaluate whether this method is feasible for screening semivolatile organic compounds (SVOCs) in indoor and near-building outdoor environments. Detectable levels of FRs, PCBs, OCPs and PAHs were found, demonstrating that HVAC filters do collect SVOCs, with generally higher levels of PAHs in the incoming air filters and higher levels of PCBs, OCPs and FRs in the outgoing air filters. Levels of FRs, PCBs and OCPs in outgoing air were comparable to those measured using conventional active air sampling in the same building. The advantages of using HVAC filters are (1) integrated and homogeneous samples, as the whole building is sampled over typically a long timescale (months), and (2) samples are easy and cheap to collect and do not require prior deployment of samplers. The key disadvantage is that HVAC filters are not designed for analytical chemistry and thus the filter materials can have variable or unknown gas sorption and particle capture, and can have strong matrix effects during analysis.


Assuntos
Filtros de Ar , Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Retardadores de Chama , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Compostos Orgânicos Voláteis , Ar Condicionado , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Retardadores de Chama/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...